

​

Architectural Requirements Document
Demo 4 – Updated Version

​

 ​ Architectural Requirements Document - Demo 4

Table of Contents​

1. Architectural Design Strategy.. 3
2. Architectural Design and Patterns...4

Model-View-ViewModel (MVVM)..4
Component-Based Architecture... 5
Monolithic Architecture... 6

3. Architectural Quality Requirements.. 7
4. Architectural Strategies.. 10
5. Architectural Constraints..12
6. Quality Requirements Testing.. 13

Latency Tests... 13
Performance Tests... 14
Security Tests... 16

7. Technology Choices..17
Component: Frontend Framework... 17
Component: Backend Logic... 18
Component: Data Storage..19
Component: AR/Positioning System.. 20

6. Architecture Diagram...21

2​ ​ BLT’S

 ​ Architectural Requirements Document - Demo 4

1. Architectural Design Strategy
Snap Vision follows a modular, layered architecture to balance scalability,
maintainability, and the limited team size. This strategy ensures that mobile, backend
and indoor/outdoor navigation services remain cleanly separated but still
interoperable.

Key factors:

●​ Separation of concerns between the frontend and backend.
●​ Parallel development support.
●​ Future scalability to support new locations.

We make use of the following layers:

●​ Presentation Layer (Mobile App): Handles UI/UX, map overlays, AR
navigation, admin tools, developed with React Native.​

●​ Business Logic Layer (Backend APIs): Manages navigation logic, user
sessions, and administrative actions.​

●​ Data Layer (Cloud Database): Stores map data, building info, navigation
points, user information, etc.

This approach aligns well with our use of mobile-first delivery and real-time data
streaming, while keeping future migration paths open with an increase in scalability.

3​ ​ BLT’S

 ​ Architectural Requirements Document - Demo 4

2. Architectural Design and Patterns

Model-View-ViewModel (MVVM)

MVVM is a frontend architectural pattern that separates the user interface (View),
business logic/state (ViewModel), and the data (Model). The ViewModel acts as the
middle layer, reacting to data and exposing only the necessary values to the UI.

●​ The View is our screens (e.g, MapScreen, ManageUsersScreen).​

●​ The ViewModel is implemented via custom hooks and state managers (e.g,
useUserManagement, useNavigation).​

●​ The Model refers to data fetched from a cloud database (e.g, buildings,
routes).

Justification:​
This pattern enforces separation of concerns within the Presentation Layer by clearly
distinguishing between the user interface, business logic/state management, and
underlying data.​
It enhances testability since the ViewModel can be validated independently of the UI,
ensuring more reliable and maintainable code. Furthermore, it supports modular and
scalable development.

4​ ​ BLT’S

 ​ Architectural Requirements Document - Demo 4

Component-Based Architecture

Component-based architecture involves dividing the system into reusable,
independent modules, each responsible for a specific feature or concern. These can
be developed, tested, and deployed in isolation.

●​ The mobile app is split into atoms/molecules/organisms (atomic design).​

●​ AR overlays, admin panels, pathfinding, and feedback tools are all
self-contained components.​

Justification:​
Component-based architecture enhances parallel development (multiple team
members can work independently), simplifies unit testing, and supports our layered
architecture. It also supports future scalability, as each component can evolve
without breaking others.

5​ ​ BLT’S

 ​ Architectural Requirements Document - Demo 4

Monolithic Architecture

A monolith means that the server-side code is shipped as one deployable unit that
serves all features, backed by one database.

●​ The mobile app includes all user-facing features (indoor navigation, QR
scanning, admin tools, AR overlays) in a single build.​

●​ The minimal backend (snap-vision-backend) is implemented as a single
service that handles route generation and connects directly to the shared
database used by the app.​

●​ The database, file storage, and authentication system act as a single unified
data source for all modules.

Justification:​
Monolithic architecture is viable for Snap Vision’s current scale and our team size
because it simplifies deployment and maintenance. ​
Having one deployable unit means faster development cycles, reduced operational
overhead, and easier debugging.​
All features share the same environment and data model, ensuring consistency
across the app. ​
While the architecture remains monolithic, we still enforce clean boundaries inside
the code through layered design, MVVM, and component-based structures, making it
easier to scale or refactor into separate services in the future if needed.

6​ ​ BLT’S

 ​ Architectural Requirements Document - Demo 4

3. Architectural Quality Requirements

Quality
Requirement

Metric / Testable
Criteria

Testing Justification How It Influenced Our Design Decisions

Latency

Location is fetched
within 5 seconds of
request.
Route is fetched
within 2 seconds of
request.

Firebase
Performance
testing was used
to monitor these
metrics and track
changes.

●​ A user can see the effects of their
actions in the app immediately.

●​ This is important for real-time
updates, such as tracking a
user’s location as they move.

●​ Immediate feedback ensures the
user receives the most
up-to-date information and
accurate routing.

●​ Components like location tracking were
decoupled to prevent delays across layers.

●​ RAM-first logic via local state helps to
minimize delays.

Performance

Map is visible within
10 seconds.
Buildings are
loaded in under 3
seconds.
Indoor maps are
available within 3
seconds.

Firebase
Performance
testing was used
to monitor these
metrics and track
changes.

●​ Performance is a critical quality
attribute, as users expect to
complete tasks with minimal
delay.

●​ Map visibility is a central function
of the system, so it is essential
that outdoor and indoor maps are
readily available to maintain a
seamless and responsive user
experience.

●​ Rendering logic is handled in React Native,
independent of route generation.

●​ Component-based architecture was used to
ensure that the map renders independently
from other services.

●​ Async updates support this by loading POIs,
routes and overlays asynchronously.

7​ ​ BLT’S

 ​ Architectural Requirements Document - Demo 4

Security

Ensure that a
user’s live location
is not accessible to
anyone besides the
user and who
they’ve shared it
with.
Strict Firestore rules
are enforced for
RBAC.

Only real-time,
non-persistent
location data is
stored.
RBAC verified
through Firestore
Security Rules
testing and role
simulations.

●​ As the system supports real-time
navigation and scalable location
tracking across multiple users
and maps, security is critical to
protect sensitive user data.

●​ No historical location data is
stored, minimizing the risk of
unauthorized access and aligning
with privacy best practices.

●​ Users cannot access
unauthorized content due to
Firestore rules.

●​ Data layer is designed with stateless,
session-based location tracking.

●​ Role-based access control to ensure
maximum security.

●​ Token-based auth is also used for access
validation.

Scalability

Support 50+
concurrent users
navigating a
building

Simulated
concurrent
sessions via
multiple emulator
instances and
staggered
navigation starts.

●​ The system must support multiple
maps and users across diverse
locations.

●​ The application must remain
reliable and responsive, even
when many users are navigating
to the same destination
simultaneously.

●​ Firebase Firestore’s horizontal scaling
supports concurrent reads/writes with minimal
latency.

●​ While the backend is a modular monolith,
routing is a separate endpoint that can be
scaled independently if needed.

8​ ​ BLT’S

 ​ Architectural Requirements Document - Demo 4

Usability

All POIs are shown
on the map.
Text to speech is
available to all
users.
Colours are
acceptable
according to WCAG
standards.

Firebase Test
Lab was used to
simulate a user
and report back
on usability
standards.

●​ An intuitive design is necessary
for first time users in order to
enhance the overall user
experience.

●​ Text-to-speech enhances
usability by making the app
accessible to users who are
visually impaired or need
hands-free interaction.

●​ Accessible indoor routes are
necessary for those who are
unable to take the stairs.

●​ The MVVM architecture allows UI logic to be
modular and updated independently of state
logic.

●​ Our use of atomic design made it easy to
reuse components and apply consistent
styling.

●​ Mobile-first UI decisions prioritise small
screen clarity and interaction.

9​ ​ BLT’S

 ​ Architectural Requirements Document - Demo 4

4. Architectural Strategies

10​ ​ BLT’S

Strategy Explanation How It’s Used

Separation of
concerns

Break different parts of
the system into distinct,
isolated layers.

UI (React Native), logic, data (Firestore), and AR
modules are clearly split.

Layered modular
monolith

One deployable backend
unit with most of the logic
being in the client.

Everything shares one Firebase project to simplify
data storage and deployment.

Event-driven design
System reacts to events,
not constant polling.

Live location updates, QR scans, Crowd Report
forms, and navigation are all event-triggered.

Component-based
modularity

Features are built as
reusable components
within the app.

Atomic design is used to maximize reusability and
efficiency.

Stateless compute
No session data is stored
in the backend itself.

Routing endpoint validates token and computes route
per request. State lives on-device.

 ​ Architectural Requirements Document - Demo 4

5. Architectural Constraints

12​ ​ BLT’S

Constraint Description Impact on Architecture

Mobile-first design
The system must work well
on mobile phones first, not
desktops

Forces a layered architecture where UI and backend
are decoupled. Optimized layouts, gestures, and
navigation for touch interfaces.

Security Rules
complexity

Rules must reflect RBAC
and location scoping
without gaps.

The component-based architecture allows for the UI to
be separate from the database calls.

Offline fallback
required

The app should still
function if the internet is
unavailable.

Architecture needs caching and client-side storage to
allow limited operation without server access.

Indoor
environments lack
GPS

Can't rely on satellite
positioning inside
buildings.

The architecture must support modular fallback
positioning subsystems (e.g., QR code).

Privacy law
compliance

No storage of personally
identifiable location history
(POPIA).

Data architecture avoids long-term tracking of users -
uses session-based data models instead.

 ​ Architectural Requirements Document - Demo 4

6. Quality Requirements Testing

Latency Tests
Quantification: Location is fetched within 5 seconds of request.
Tool: Firebase Performance Testing.

Conclusion: The Firebase Performance Testing logs prove that a user’s location is fetched
within 5-10 seconds, which is slightly slower than ideal. However, this is expected due to
environmental factors and internet strength.

Quantification: Route is fetched within 2 seconds of request.
Tool: Firebase Performance Testing.

Conclusion: The above logs show that the route is fetched within 1 second, which

surpasses our initial expectations.

13​ ​ BLT’S

 ​ Architectural Requirements Document - Demo 4

Performance Tests
Quantification: Map is visible within 10 seconds.
Tool: Firebase Performance Testing.

Conclusion: The map was visible within the range of 5-13 seconds. This measurement is
dependent on external factors such as internet strength.

Quantification: Buildings are loaded in under 3 seconds.
Tool: Firebase Performance Testing.

Conclusion: The above metrics show that the list of available buildings for uploading a
floorplan consistently loads under 3 seconds. This is in line with our expectations, as caching
is used to improve load speed.

14​ ​ BLT’S

 ​ Architectural Requirements Document - Demo 4

Quantification: Indoor maps are available within 3 seconds.
Tool: Firebase Performance Testing.

Conclusion: Indoor floorplans consistently load within 3ms. This aligns with our initial
expectations.

15​ ​ BLT’S

 ​ Architectural Requirements Document - Demo 4

Security Tests
Quantification: RBAC is enforced via Firebase Rules.
Tool: Firebase Security Unit Testing.

Conclusion: The above tests thoroughly go through the enabled Firestore Rules to ensure
that there is no unauthorized access. All of the tests pass, which aligns with our
quantification of strict RBAC.

16​ ​ BLT’S

 ​ Architectural Requirements Document - Demo 4

7. Technology Choices

Component: Frontend Framework

Option Pros Cons

React Native Fast development, large
ecosystem, cross-platform,
reusable UI logic

Some native modules (e.g.,
ARKit, BLE) are trickier

Flutter Excellent UI capabilities, performs
close to native

Smaller ecosystem, Dart
learning curve

Native
(Kotlin/Swift)

Full control over device features Time-consuming; separate
codebases for Android and
iOS

Final Choice: React Native​
We selected React Native as it aligns with our mobile-first architecture and supports
the Component-Based strategy through modular, reusable UI components. It also
integrates cleanly into our MVVM frontend pattern, supporting separation of
concerns.​
This decision enables rapid development within our team's capabilities. Although
native AR integration is slightly more complex, our architecture accommodates this
through isolated AR modules, ensuring our design remains modular and
maintainable.

18​ ​ BLT’S

 ​ Architectural Requirements Document - Demo 4

Component: Backend Logic

Option Pros Cons

Express.js
(Node)

Lightweight, widely supported, fully
customizable, REST-friendly

Requires hosting and some
server management

Firebase
Functions

Serverless, mobile-first, scales
automatically, easy auth
integration

Limited long-running control
and infrastructure flexibility

AWS
Lambda

Language flexibility, scalable,
serverless

Complex to set up and
manage IAM and API Gateway

Final Choice: Express.js (with Node.js)​
We chose Express.js because it provides a lightweight, modular backend framework
that fits naturally with our layered architecture and componentized design. Express
gives us full control over backend routes like /generateRoute which is central to our
system.

While it does introduce some infrastructure responsibility, we mitigate this with
simple deployment pipelines (CI/CD via GitHub Actions) and host our backend on
cloud infrastructure that still respects our cost constraint (e.g., keeping usage within
free-tier limits). Express also integrates well with Firestore, allowing us to coordinate
logic and data layers without platform lock-in.

This approach supports our stateless design, makes testing easier, and aligns with
our goal of flexibility across future deployments.

19​ ​ BLT’S

 ​ Architectural Requirements Document - Demo 4

Component: Data Storage

Option Pros Cons

Supabase SQL support, RLS (role-level security),
file storage, real-time APIs

Still maturing; some
features are in beta

Firebase
Firestore

Real-time syncing, mobile-friendly,
serverless, scalable

Complex querying is
limited (e.g., joins)

MongoDB
Atlas

Flexible document model, powerful
querying

Requires server setup or
third-party backend

Final Choice: Firestore (for sessions, routes, POIs)

Firestore handles real-time, loosely structured data like navigation sessions and
feedback, supporting our event-driven design and low-latency QR updates

This optimizes for performance, scalability, and modularity. It also allows us to stay
within free-tier limits, ensuring the system is cost-effective and responsive.

20​ ​ BLT’S

 ​ Architectural Requirements Document - Demo 4

Component: AR/Positioning System

Option Pros Cons

ARCore/

ARKit

Native AR SDKs for Android/iOS,
low latency, high realism

Requires tuning,
platform-dependent setup

React Native
Vision
Camera +
Custom AR

Cross-platform, integrates with RN
ecosystem, customizable overlays

Limited AR capabilities

8thWall High-quality web-based AR,
supports image anchors

Paid license required, not
mobile-native

Vuforia Strong image tracking,
cross-platform

Not designed for real-time
indoor navigation

Final Choice: React Native Vision Camera + Custom AR implementation​
We selected React Native Vision Camera as our AR foundation to maintain
cross-platform compatibility within our React Native app. This approach allows us to
build custom AR overlays using React Native components while accessing device
camera capabilities. It also allowed for using react native libraries to capture device
heading data. Whilst not having advanced AR features, it is able to provide essential
navigation functionality through directional overlays and compass-based guidance
that meets our core requirements.

The AR navigation is handled by ARNavigationOverlay which provides:

●​ Camera-based AR view with directional overlays
●​ Compass-based bearing calculations
●​ Fallback non-camera guidance when camera access is unavailable

However, due to the no-GPS-indoor constraint, we also built a QR code fallback
system to anchor indoor positioning. This modular fallback strategy supports our
separation of concerns design, allowing AR, QR, and 2D views to operate
independently.

This solution meets usability, latency, and availability quality requirements while
respecting platform limits.

21​ ​ BLT’S

 ​ Architectural Requirements Document - Demo 4

6. Architecture Diagram

22​ ​ BLT’S

	
	
	
	1. Architectural Design Strategy
	
	2. Architectural Design and Patterns
	Model-View-ViewModel (MVVM)
	
	Component-Based Architecture
	Monolithic Architecture

	
	3. Architectural Quality Requirements
	
	4. Architectural Strategies
	5. Architectural Constraints
	

	6. Quality Requirements Testing
	Latency Tests
	Performance Tests

	
	
	Security Tests

	7. Technology Choices
	Component: Frontend Framework
	

	Component: Backend Logic
	

	Component: Data Storage
	Component: AR/Positioning System

	6. Architecture Diagram

